Platforms for big data includes mechanisms and tools to model, organize, store and access big data (e.g. Apache Cassandra, Hbase, Amazon SimpleDB, Dynamo, Google BigTable). The resource management for those platforms is a complex task and must account also for multi-tenancy and infrastructure scalability. Human assisted control of Big data platform is unrealistic and there is a growing demand for autonomic solutions. In this paper we propose a QoS and energy-aware adaptation model designed to cope with the real case of a Cassandra-as-a-Service provider.

An energy-aware adaptation model for big data platforms / Casalicchio, Emiliano; Lundberg, Lars; Shirinbad, Sogand. - STAMPA. - (2016), pp. 349-350. (Intervento presentato al convegno 13th IEEE International Conference on Autonomic Computing, ICAC 2016 tenutosi a Wurzburg; Germany nel 2016) [10.1109/ICAC.2016.13].

An energy-aware adaptation model for big data platforms

Casalicchio, Emiliano
;
2016

Abstract

Platforms for big data includes mechanisms and tools to model, organize, store and access big data (e.g. Apache Cassandra, Hbase, Amazon SimpleDB, Dynamo, Google BigTable). The resource management for those platforms is a complex task and must account also for multi-tenancy and infrastructure scalability. Human assisted control of Big data platform is unrealistic and there is a growing demand for autonomic solutions. In this paper we propose a QoS and energy-aware adaptation model designed to cope with the real case of a Cassandra-as-a-Service provider.
2016
13th IEEE International Conference on Autonomic Computing, ICAC 2016
Apache Cassandra; Autonomic computing; Big Data; Cloud computing; Green computing; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and Optimization; Control and Systems Engineering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
An energy-aware adaptation model for big data platforms / Casalicchio, Emiliano; Lundberg, Lars; Shirinbad, Sogand. - STAMPA. - (2016), pp. 349-350. (Intervento presentato al convegno 13th IEEE International Conference on Autonomic Computing, ICAC 2016 tenutosi a Wurzburg; Germany nel 2016) [10.1109/ICAC.2016.13].
File allegati a questo prodotto
File Dimensione Formato  
Casalicchio_Energy-aware_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 140.01 kB
Formato Adobe PDF
140.01 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1065174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact